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FOREWORD 

The study on inhich this report is based constitutes a part of the research 

program sponsored by the U, S« Navy through the Office of Naval Research 

(Fluid Dynamics Branch) under Contract No« Nonr=265>3(00)c 

The author nould like to take this opportunity to acknowledge the assist- 

ance of Mrs« Angela Chang •who undertook most of the detailed analysis$  and 

Mr* F* Butler for programming the digital machine computations» He also found 

during the course of investigation his discussions -with Drs<> W# Eo Gibson* J» G« 

Hall and F« K« Moore most helpful« 
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ABSTRACT 

A theoretical study is made of hypersonic flows over thin bodies subject 

to the combined effect of leading-edge bluntness^, boundary-layer displacement as 

well as surface incidence,, Within the scope of the boundary-layer theory and 

the hypersonic small-disturbance theorys an approach is developed based on a 

flow model consisting of three adjoining regionss an inner laminar boundary 

layerj an outer (detached) shock layers and between these two, a low-density 

entropy layer« This approach allows simultaneous treatment of the boundary layer 

and its outer inviscid flow field in a manner consistent with the Newtonian 

shock-layer approximation. 

The theory pertaining to the leading approximation for strong shock and 

-/—»»1 is completely developed and its simplicity permits solutions to a number 

of problems of interest. For the flat plate at zero incidences the theory 

yields a solution agreeing with the blast-wave theory at one limit and the 

strong inviscid-viscous interaction theory at the other. Results are also ob- 

tained for the flat plate at incidence. The results for the pure inviscid flows 

with tip-bluntness effect exhibit an oscillatory decay in pressure on slender 

cone and wedge afterbodies. This phenomenon signifies an idealized form of re- 

impingement of the shock layer on the afterbody at glancing incidence. 

Complementary to the aforementioned studys  an examination is made of the 

similitude of hypersonic boundary layers, taking specifically the leading-edge 

bluntness into account. Rules for correlating pressures  shock shape <, skin fric- 

tion and heat-transfer rate are given. The simplification of these rules for 

flows with strong shock waves is pointed out. 
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NOTATION 

6t speed of sound in the free stream 

/A , ß constants 

/O [M *x—J  /zfL y    i    tne skin-friction coefficient 

*• (K »rJL/0* V^~ H^S ^ ^Ha,~ Hw) s the surface heat~ 
transfer coefficient 

XV^j/C^.     specific heats of the gas at constant pressure and at constant 
^        volume,  respectively 

Q constant of proportionality in the linear viscosity temperature 
relation /x//lm = CT/T^ 

G * /*(TJ       £ * 

£} drag of the blunt leading edge or nose 

e specific internal energy of the gas 

f y f symbols representing certain functions of the variables involved 
in Eqs» (lul5), (5.1) and (5.2) 

Jy specific enthalpy 

H X+\\VL'+M'%) J» total specific enthalpy 

th J" ) y      C  order Bessel's functions of the first and second kinds 
*      r      respectively 

J D^/j ft» Uhfatfof      >    leading-edge (nose) drag coefficient 

[^ fv|,f ^ (6^j *' -~  j a parameter controlling inviscid tip-bluntness 

effect 

L reference length 

7)2, constant associated with the streamline in the entropy layer 

1*1 U/^oo    »    free-stream Mach number 
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NOTATION (Contd) 

Pr 

R 

Re 

t 

T 

T# 

V 

Au. 

l'K'K'l 

i,i 

ac 

i 
c5, ^ 

6,6. 

e 

pressure 

Prandtl number     yi< /CJ^/K 

gas constant in the equation of state 

Reynolds number 

thickness of the blunt leading edge or nose 

temperature 

& *   $    a reference temperature for defining C I 
velocity components parallel to the   /$C   and 
tively 

axes., respec= 

the value of li in the free stream 

U — U 3    the streamwise perturbation velocity 

rectangular coordinates in directions parallel and normal,, respec- 
tively s, to the free-stream velocity with the origin at the nose 

the w   ordinates of the inner edge of the entropy layer,, the 
outer edge of the entropy layer, the shocks and the body surfaces 

respectively 

the variables related to y  and /p    9    respectively,, as defined 
in the text 

the angle of attack of the flat plate. Positive oC    refers to 
compression or wedge flow over the surface in question? also half- 
cone angle 

WV   s specific-heat ratio 

the boundary-layer thickness and displacement thickness, respec- 
tively 

7T) 
5,    respectively 

the shock angle,  i„e<,   (£Y§/d<y> $    which may be taken as the typical 
flow-deflection angle 
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NOTATION (Contd) 

W-H w 
H»""^w 

^ a function whose derivative d§/S)ft   is yj- 

fc- thermal conductivity of the gas 

JA viscosity of the gas 

X } 0 certain variables in Section it 

£,n two spatial variables used in the boundary-layer analysis, see 
1 Eq. (2.1) 

•j) a number which is zero for plane flows and unity for axisymmetric 
flows 

p gas density 

Tt ^/%( 

rf a body thickness parameter used in the similitude consideration 
(for the wedge and cone, f = Q£ ) 

^ V \    n"r^ > ^Mz s M*nSr s respectivel3r 

T        — 
Of €  (O.66I4. + 1„73 -3^-) *%    ,    a parameter governing the boundary- 

layer displacement effect 

0} the constant exponent in the relation    tUOC 7* 
a 

Subscripts 

b pertaining to the inner edge of the entropy layer 

ß pertaining to the Blasius solution 

e at the outer edge of the entropy layer 

|_ based on the reference length {/ft •=  L ) 

M pertaining to the condition behind the strongest part of the shock 
at the nose 
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NOTATION (Contd) 

S behind the shock (at /£    ) 

t based on the nose thickness {/£-=t) 

w at the body surface or wall 

<5 at the outer edge of the boundary layer 

o pertaining to the free-stream stagnation conditions (for the tem- 
perature) 

co pertaining to the free-stream condition 

* based on the reference temperature T. 
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SECTION 1 

INTRODUCTION 

Two outstanding features characterize the hypersonic flow around a thin 

body. One is the displacement effect of the boundary layer and the other is the 

downstream influence of a small, but blunt, nose or leading edge. The pro- 

nounced displacement effect is related to the viscous dissipation of the high- 

speed flow, which raises the local temperature and thus the kinematic viscosity» 

The lateral extent of the hypersonic boundary layer may therefore become com- 

parable, or greater than, the thickness of the thin body, and an interaction of 

the inviscid and viscous flow regions must take place» The importance of the 

leading-edge bluntness may be perceived from the connection between the energy 

gained by the cross-flow field and the nose drag» Since the drag of a blunt 

nose is rather high, the work done by it alone may account for a sizable portion 

of the total energy delivered to the fluid« The unsteady motion observed in the 

cross-flow plane, that is, a plane fixed with respect to the ambient fluid and 

transverse to the direction of motion, may therefore be compared with that of a 

blast wave generated by instantaneous release of energy of an amount proportional 

to the nose drag» For hypersonic flight of slender bodies, leading-edge blunt- 

ness is generally essential for heat-transfer control, while for flight at 

relatively high altitude, the boundary-layer displacement effect is important» 

This study will consider hypersonic flows in which both of these phenomena are 

present» 

There is a body of theory dealing with each of these two effects as inde- 

pendent phenomena» For the boundary-layer displacement problem taken separately, 

we have the rather extensive works on strong and weak interactions of the invis- 



cid and boundary-layer flows over a (sharp-edged) flat plate, as well as treat- 

1-17 ; 

raents of related problems   „ These theories provide an account of the self- 

induced pressure in the outer flow associated with the displacement effect of 

the boundary layer» From the literature oh the subjects  the early contributions 

of Shen '  ,  Lees and Probsteins  , Li and Nagamatsu , and also the definitive 

work of Stewartson" should be noted» Taking the bluntness effect separately., we 

18    - 19 20-2ii have the strong blast-wave theories of Lin    $ Lees and Kubota      and others 

These works make use of the' analogy between the transient cross-flow field down- 

stream of a blunt nose and the flow field produced by a violent explosion of the 

2<  26 
type previously treated by Taylor s 

On the other handj, for the problems in which both the displacement and 

bluntness effects are important» there has not been any satisfactory theory» A 

theory accounting simultaneously for both effects is essential not only for its 

practical implication«, but also because the task of isolating these two effects 

27-31 
in hypersonic flow is generally not simple $ even under laboratory conditions    < 

The aim of this paper is to present a simplified but consistent approach to the 

problem which will render possible the study of interaction of the boundary layer 

with the outer flow under the influence of leading-edge bluntness as well as 

afterbody geometry» 

A continuum flow model consisting of a laminar boundary layer adjacent to 

the slender body and an inviscid outer flow field will be assumed for this theo- 

retical study« Since the Mach numbers considered are high., and the bodies thin«, 

the lateral extent of the flow field bounded by the bow shock is small» Our 

analysis may therefore be carried out within the scope of the boundary-layer 

theory 3    and the (inviscid) hypersonic small-disturbance theory    . Within 



this framework, two complementary studies are made» First, and the major part 

of our analysis, is the development of an approach 'which takes account of the 

combined effect of boundary-layer displacement, leading-edge bluntness, and body 

thickness» To achieve this end, certain approximations and simplifications will 

be introduced,. The second study is concerned -with hypersonic similitude when 

both boundary-layer and tip-bluntness effects are present, and -with simplifica- 

tion of the similarity law for flows with strong shock waves. For this simili- 

tude consideration, a number of the assumptions introduced in the first study are 

not required» 

Underlying the present approach are the two basic concepts? a local simi- 

larity in the boundary layer and a detached shock layer in the outer inviscid 

flow» Both of these concepts are desirable for a development consistent with the 

so-called Newtonian shock-layer approximation   « The consistency between 

local sjjoilarity and the shock-layer approximation has, in fact, been discussed 

earlier «, The concept of a detached shock layer, which includes the so-called 

3^1*1 
"free layers'»    as special cases, is a necessary modification of the shock- 

layer theory to allow treatment of tip bluntness« 

A similar treatment of the tip»bluntness effect has been given previously 

21 22 
by Chernyi *    „ The essential idea of a detached shock layer is implicit in his 

integral method for hypersonic inviscid flows« While Chernyi 's method and the 

present analysis are equivalent in the idealized limit */-—>1   $    they differ 

in the higher order approximation for Y  not close to unity« It may also be 

pointed out that the inviscid tip-bluntness effect has been studied recently by 

Guiraud. s    * Her@5 the idea of a detached shock layer -was employed, and certain 

equations obtained are very sämilar to those to be developed later in this re- 



port« Guiraud's study doe8 not lead to an explicit solution of the problem-, 

however« 

Throughout the present analysis an ideal gas with constant specific heats 

•will he assumed ahead of and behind the shook (although "/ may change across 

the shock)« In order to arrive at a simple form of local similarity in the 

boundary layer ^ the Prandtl number is taken to be unity, the body temperature 

is assumed to he uniform^, and a linear viscosity-temperature relation is adopted« 

The present study is primarily concerned with plane.» steady flows« For the 

purpose of comparing plane and axLsymmetric flow for the inviscid tip-bluntness 

effect* however* the problem of a blunted slender cone is also studied along 

* 
with the corresponding problem of plane flow over a blunted wedge« 

The three requirements which control the accuracy of the following analysis 

of the present flow model may be expressed as follows« 

(a) The disturbance velocity ~^- == \~~ - /  * as mil as the 

square of the flow angle* in the inviscid flow field must he 

negligibly small in comparison to unity« 

(b) The bow shock wave must be sufficiently strong« 

(c) The specific heat ratio / must be sufficiently close to unity« 

The first requirement implies exclusion of the blunt-nose region itself 

from the present enquiry* and we will deal only with its dowistream effect« The 

consistency of these requirements and the degree of the approximation involved 

will be examined later« The aero»order theory* -rahich is to be studied in detail* 

The axisymmetric problem involving boundary-layer displacement is complicated 
by the transverse-curvature effect« In principle,, however * a modified form of 
the local similarity can be obtained for the boundary layer,, although it may 
lose the appeal of simplicity. 



pertains to the leading approximation -under the last two requirements cited^ and 

may therefore be compared with the classical result of Busemann (Newtonian- 

Plus-Gmtrifugal-Foree) <. 

In -view of the continuum assumption^ the present theoretical model cannot 

be used as a valid description of flow phenomena when the molecular nature of 

the gas is manifested« On the other hand.» the effects of velocity°slip5 and 

temperature-jump, as well as of the »vorticity interaction" which precedes the 

breakdown of the usual continuum models may be seen to belong to the same* or 

13sl6s}jk 
highers  order as the error in the standard boundary-layer approximation     « 

We may therefore expect the continuum theory to remain meaningful so long as 

there exists a sufficiently thin boundary layer« and this condition is implied 

by requirement (a). Based on the solutions obtained^ it is possible to define 

a domain ©f validity for the present continuum flow model in terms of the Mach 

and Reynolds numbers of the free stream« It may be seen that this domain is 

large enough to permit many useful applications« The adoption of th© unit 

Prandtl number and a linear viscosity-temperature relation may seem at first 

sight to be oversimplifying the problem« As examples will reveal^ these sim- 

plifications are not likely to affect the skin friction« heat transfer 9  and the 

displacement thickness in a significant -way«, particularly<> linen an appropriate 

reference temperature is chosen for the viscosity-temperature relation« ¥e 

may notice also that for the present analysis9  these two assumptions are not 

strictly necessary* Analyses similar to the present one may be carried out for 

an arbitrary but constant Prandtl number and a more general viscosity law with 

no apparent difficulty« Another limitation of the present study iss of course <, 

the assumption of constant specific heats«, The gas behind the normal shock in 



front of a blunt nose^, wider most circumstances,, -will be in a dissoeiatedj, or 

internally excited statef the specific heat ratio of the gas wiH he closer to 

•unity than that under standard atmospheric condition,. Generally speaking., the 

shock-layer approximation may improve as a result of the real-gas properties at 

high temperature., Strictly speaking,, however <> the specific heat ratio or its 

equivalent cannot generally be taken as constant for the entire flow field«, If 

the flow field over the slender afterbody can be assumed to be near local 

thermal equilibrium-, and if the body temperature is sufficiently low5 the real- 

gas effects may not be critical since the local temperature downstream is con- 

siderably lower than the stagnation temperature at the nose« In any ease., the 

approach presented herein may still be employed to simplify the analysis, al- 

though it may not lead directly to a solution* This point will be discussed 

further* 

A somewhat shortened version of this investigation^ together with experi- 

mental results , has been presented in Ref* k$  * In addition to the inclusion of 

tip-bluntness effects in axLsymmetrie flows« further discussion and clarifica- 

tion not given in Ref« kS wall be taken up here* 

In the following sections s  the local similarity in the boundary layer and 

its consistency with the inviscid shock-layer approximation will first be dis- 

cussed* The theory of a detached shock layer will next be considered* The 

zero-order theory for the complete problem will then be developed and applied 

to particular cases of interest« 

A* 

" The experimental study described in Ref* h$ was conducted in the Cornell Aero- 
nautical laboratory 11 x l^~inch Hypersonic Shock Tunnel under the sponsorship 
of the IT* S* Air Force Office of Scientific Research* 



SECTION 2 

THE LOCAL SIMILARITY AND THE SHOCK-LATER APPROXIMATION 

The idea of assuming a local similarity in the boundary layer as a means 

of estimating heat-transfer rates on blunt bodies at high speed -was first proposed 

1*6 k7,ii8 
by Lees  and utilized by others   « Lees observed that the enthalpy distri- 

bution in the boundary layer is rather insensitive to pressure gradient^ parti- 

cularly if the boundary layer is cooled« For most engineering appHcationj, it 

suffices to ignore the pressure gradient^ except for its effects on ©hanging the 

local Reynolds number* In this case the problem is reducible to that of a flat 

plate5 and for this problem.^ a self-similar solution eseLsts if the -Ball-to- 

stagnation temperature ratio is constant along the plat©« 

It is essential to recognize that in the present studys -six ere only thin 

bodies are considered,*, the pressure gradient is unimportant not primarily because 

the Ball is made cold., but because the direct effect of pressure gradient on 

the hypersonic boundary layer is at most of the order 

es 
1 + 1 

The condition of small e    is a requirement In existing shock-layer theories for 

35~i|.Q 
inviscid hypersonic floie   <, It is natural to treat the present boundary- 

layer problem by an analogous perturbation procedure -which uses e as a control- 

ling parameter« The argument used for the local similarity method in blunt body 

applications is avoided in the present approach» 

In a more specific sense^, the slanilarity under discussion should be termed 
the "local flat-plate similarity"«» 



The foregoing considerations are readily seen after transforming the var- 

iables    /fr   s w   in the boundary layer as follows % 

pt 

L 

where i-^fÖW^ 
p  U    L 

r~y _      fao        00 

Assuming a linear viscosity temperature relation 

S*     _ 
yU 

= c T_ 
T 

00 

and a unit Prandtl number > the system of differential equations governing the 

boundary-layer problems in plane flow is reduced to 

Z$nnn+$$n«-Zl[$J*n   ~   M, 197 <T) 

-  € 

1 *?7 

P 
' W    . / i        'w 

-$; 
\£. ftJU&fJ 

2enn<-Je, -2 $ e,-#fe,*f,o  -*.u(l-*£ 

and the boundary conditions to 

= 0 

$= fB =e = o 

= © = / 

at 

at       n = co 
(2.1b) 

where 

9 = 
H-Mw 



In arriving at these equations, quantities of orders \/M
%
   and- Au^/U    higher 

than the remaining terms have been neglected« Implicit in Eq« (2*1) is the fact 

that within the degree of approximation afforded by the boundary-layer analysis, 

the normal pressure gradient can be ignored« For the neglect of the pressure 

variation across the boundary layer, an extremely thin boundary layer is not 

strictly necessary« Rather, the neglection depends on the density level within 

the hypersonic boundary layer being relatively low* Therefore the pressure may 

be taken as a function of <%,   alone even when the boundary-layer thickness be- 

comes comparable to the lateral extent of the outer flow  « 

EToWj, consider the situation when € is also small« Except for the param- 

eter e itself, all terms appearing in Eq» (2«1) will remain of order unity« 

That is, they will be independent of e in the limit G —»0 « In this limit, 

the right-hand member of Eq« (2»la), which involves the pressure gradient.» van- 

ishes with £ » The leading approximation to the solution of the system 

Eq9 (2«1) for small e will therefore be independent of € and is, in fact, 

governed by the Blasius equation 

B      *B *B I (2.2) 

5(0)= $>)= §' (CO)  -1=0 

with ©B = $  * The problem of determining the higher-order approximation is 

equivalent to finding a correction to the classical flat-plate solution for a 

slight nonuniformity of the outer inviscid flow« The nonhomogeneous term appear» 

ing on the right of Eq« (2©1) reveals clearly the role of the -wall-to-stagnation 

temperature ratio In Controlling the degree of approximation of local boundary- 

layer similarity. Changing Tw/T0     from unity to zero may typically reduce the 

correction term by 1%« 



Neglect of the pressure-gradient term in the boundary-layer momentum equa- 

6 
tion has also been employed by lees to simplify the problem of strong shook 

boundary-layer interaction» For this problem, hoisever, a self-similar solution 

exists even with the pressure gradient retained» The theoretical justification 

for the neglect of pressure gradient to cases involving arbitrary pressure dis- 

tribution on the basis of the shock-layer theories has only been pointed out 

Id, 
quite recently * 

The mathematical problem of determining the higher-order approximation is 

one that involves solution to a linear partial differential equation« An alter- 

native -which avoids solving the partial differential equation is, of course, the 

momentum-integral method usually adopted in boundary-layer analyses» For the 

purpose of determining pressure, skin friction, and surface heat-transfer rate 

for the present problem, this method may be sufficient, as has been demonstrated 

9 
by Stewartson's analysis for the strong interaction problem of the flat plate « 

k9 
The scheme arrived at recently by Moore , -which accounts for the first-order 

correction to the local similarity, is essentially one of a similar nature,, 

¥hen the momentum-integral method is employed, the local similarity assumption 

is no longer necessary, even as a leading approximation (for small 6 )» 

In the leading approximation for small 6    , the surface heat-transfer 

rate, the skin friction, and the displacement thickness of the boundary layer are 

determined explicitly from the pressure distribution» For the case of plane 

fl0W  3        _ W-f 
•v/W -p> 

*_    L 
^F  ^ ^H ________ (2*3) 

M 
L f *e(a664+173 Tllr^pjT 



where 

I,  s M /£ eL 
These results^, in view of the approximations involved,, will be subject to errors 

of order € and Au^/U o The usual errors inherent in the boundary-layer 

equations as well as errors from possible slip» temperature-jump« and vorticity 

effects« will presumably be no larger than those incurred by the approximation 
13,l6oliU .  / 

U.*& U. »    The magnitude of Ai^^/U will be examined later» 

Before proceeding to the analysis of the inviscid flow region« the choice 

of a reference temperature for the determination of the constant in the linear 

viscosity-temperature relation will be discussed» The assumption of such a vis- 

cosity law may seem to be unrealistic since the temperature variation within the 

hypersonic boundary layer is quite large and the detail of viscosity law may be 

important» The approximation may be considerably improved by choosing the con- 

stant C to represent correctly the value of viscosity at an appropriate refer- 

ence temperature» Instead of choosing the wall temperature as a reference, as was 

proposed earlier by Chapman and Eubesin^ and adopted later by others for hyper- 

sonic applications« we recommend a reference temperature TL defined by 

"L = z /f3~H/6 C2J0 

whence 

This choice of f     is particularly meaningful when local boundary-layer similar- 

ity holdsj as in the present problem» For we may then apply Crocco's integral 

11 



relation, and the reference temperature 7^ given above is seen to be simply an 

+ 
average temperature across the hypersonic boundary layer, i»e0 

The skin friction and the heat-transfer rate on a flat plate under uniform pres- 

sure based on 7^ of Eq„ (2„ij.) agree exceedingly well with results based on the 

Young formula"^ in the higher Mach number range, provided the Prandtl number is 

not far from unity, A comparison of these results, including the results based 

on Tw as a reference temperature, is given in Table I» 

An examination shows that T*    given by Eq„ (20U) turns out to be quite close 
to the reference temperature proposed by Eckert'' . 

12 



SECTION 3 

LEADING-EDGE BLUNTNESS EFFECT AND 
DETACHED SHOCK LAYER 

A Model for the Inviscid Flow Field 

The necessity of allowing the shock layer to detach from the afterbody of 

a blunt leading edge is evidenced by the breakdown of the standard shock-layer 

theory around the shoulder region -where the pressure wold accordingly fall be- 

low zero and the shock-layer thickness would become infinite* The essence of 

our analysis is that the pressure at the base of the detached layer will not be 

39 
assumed equal to zero, a priori, as was done for a free layer , but is to be 

determined as part of the solution to the problem* 

It is essential to realize that, -within the inviscid, hypersonic-flow re- 

gion bounded by the shock and the body (i«e«., the outer edge of the boundary 

layer) downstream of a small blunt nose, there is an inner core of considerable 

extent containing gas particles which have come through the comparatively forward, 

and hence stronger-, portion of the shock (see Fig* 1)* It is appropriate to 

term this region an entropy layer, since its specific entropy is much higher than 

that prevailing near the adjacent shock* The temperature within this layer is 

accordingly much higher, and the density much lower,} than the corresponding 

values near the shockj the gas within the entropy layer has been heated, so to 

speak, by the strong forward portion of the curved shock« It is natural to con- 

sider the remaining, and relatively thin, high-density part of the flow field 

behind the shock as a shock layer in the usual sense, except for the fact that it 

is no longer attached to a rigid body* The equivalent body surface for this 

shock layer over the relatively slender, downstream portion of the flow field 

can be taken to coincide with the outer edge of the entropy layer, <U> = Y fa)    $ 
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•which;, in -view of the particle-isentropic condition^, must also be a streamline 

(see Fig, lb). Across this streamline boundary«, the pressure must be eontin- 

UOUSe 

The flow structure within a hypersonic shock layer has been treated quite 
"*37 UP StA 

extensively by Freeman  and others   « Our present study •will deal with the 

entropy layers  the outer edge of which is the base of the shock layer. To do so., 

we need a knowledge of the pressure at the base of the shock layer in terms of 

Ye . The leading approximation under (b) and (c) for this relation«, according 

to shock-layer analysis$  is simply 

-Pe   * /L   U' 
,,a 

I ^er; (3a) 

which represents the Newtonian-plus-eentrifugal (Busemann) pressure formula sim- 

plified for thin bodies» . The corresponding formula in the asdLsymmetric case is 

Z v^u z 
U >   z 

Restrictions of the Iresent Analysis 

In •view of the high temperature attained within the entropy layer, the 

local velocity u   could be considerably reduced from its free-stream value U    <, 

Since the assumption of Lus & U   has been made in the boundary-layer analysis, 

and will be used later in the treatment of the entropy layer.» an assessment of 

the magnitude of Au./U  is important and will be made prior to further develop- 

ment 0 

It may be noted that in the vicinity of the blunt-nose region-, the inner edge 
of the shock layer (which in this instance is a free layer) may not be closely 
represented by a streamline» This implies that streamlines within the entropy 
layer actually come from various points along the curved bow shock upstream 
(see Figo la)5 and the distribution of entropy within the entropy layer is not 
generally uniform«, The validity of the assumption that the inner edge of the 
detached shock l^rer approaches a streamline depends^, in fact, on the small- 
distance assumption (a). 
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For the purpose of examining the magnitude of Au/l/ in the entropy layer, 

we consider first the particular case of a flat plate under the influence of the 

strong blast-wave effect produced by its blunt tip» For this case* the surface 

pressure distribution is quite well established by the consistent results of the 

19 20 2ii 
blast-wave theory '    3     and the correlated numerical calculations based on the 

23 
characteristics method . We can therefore determine the maximum value of the 

perturbation velocity (for arbitrary <& ) from the particle-isentropic condition 

and the Bernoulli relation« Maximum values of Au>/U\    for •/ » 1*20, l*hp, 

and 1«667 are presented in Figo 2 as a function of 4>/Jkt  * The results indicate 

that sufficiently far downstream of a blunt nose ( &/M, ~ 10), Aii/u   remains 

sufficiently small to permit the approximation u &  U • 

Since in most cases, 

fh < . *> » -%• M V 

where Q   is the local shock angle (which gives also the typical local flow 

angle), a conservative estimate for the perturbation velocity may be obtained 

from the Bernoulli relation, which can be taken as 

A u. 
•>Z±L z 

^J        0 (9) 
r 

u 

where the exponent   2 (?- l)/f    has the values 1/3, k/7> and k/$ for ? - 1<>20, 

1«U0, and 1«66? respectively* 

¥e may now state more explicitly, in terms of the typical flow deflection 

angle,, the requirements which will control the degree of accuracy of the subse- 

quent analysis of the inviscid-flow region, as well as of the boundary layers 

* 
At 4,/Jkt ^ 10. , |Att/u| 6 0*12, 0«l6, and 0,26 for -f  • 1,66?, 1.1|.0, and 1.20, 
respectively* In the calculation for 5" s 1«20 , the pressure formula given 
by the zero-order theory for small e    has been used» 
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(A) "VC©J     must be negligible in comparison with unity 

(B) \/\/\*'Q% mast be sufficiently small in comparison with unity 

(G) 6        must be sufficiently small in comparison -with unity 

Obviously* condition (A) is essential for the assumption \L~\j   at the outer edge 

of the boundary layer and -within the entropy layer as well» Condition (B) calls 

for a sufficiently strong shocks and (C) and (B) together mil permit treatment 

by the shock-layer concept« By these requirements* the admissible ranges of the 

shock (and flow) angle 0 * and g * are necessarily restricted« To satisfy 

the small-perturbation assumption* &   must be small-, but not so small that the 

shock cannot remain strong« In addition, the shock-layer approximation requires 

£ to be close to unity ^ but not so close that the small-perturbation assumption 

will be violated« The ranges for 0 and € can* of course, be enlarged by in- 

creasing M    and by including (consistently) terms of higher orders in e    and 

I/MV* 
Analysis of the Batropy Layer 

Our analysis will be based on the fact that the density within the entropy 

layer is low compared to that in the free stream* "x«e« /O «/?     « It is 

essential to examine the compatibility of this fact with the requirements set 

forth above« Since the density depends not only on the pressure but also on the 

entropy,, we should distinguish two situations« In one* the streamlines over most 

of* or at least a considerable part of* the entropy layer come from the immediate 

vicinity of the blunt nose« In other situations* the streamlines from the blunt 

nose region reach only a small fraction of the entropy layer« 

* The rest of the streamlines in the entropy layer come from the slender but 
still comparatively forward and stronger portion of the curved bow shock« 
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In the first situation, the specific entropy is at the same level as that 

prevailing at the nose, and the order of magnitude of the density may therefore 

be represented for particle-isentropic flow by 

p .. /./ irv =0 
I % 

P       -r-i \i» iief 

Comparing this with requirement (A), we see that the local density is indeed 

small in comparison with the free-stream value when (A) is satisfied«  In the 

second situation, the density distribution given Toy the strong blast-wave 

theory 3    f    '    5  should be valid, since streamlines over most parts of the 

entropy layer now come from the slender portion of the shock| hence., the hyper- 

sonic small-disturbance theory applies* The fact that the blast-wave solutions 

reveal the structure of a detached shock layer and a low-density entropy layer 

is well known» The ratio p/p   in this situation may, in fact, be represented 

by (assuming a flat-plate afterbody) 

t° _ 
' 00 

6    e 

which is small for all practical purposes. The second situation may perhaps be 

realized only for an extremely small blunt nose .(hence large ^/t   ) together 

with an extremely high Mach number« In either situation, the supposition 

-%-    ^  I (3.2) 

within the entropy layer can be well justified« Its error is presumably no 

larger than that incurred by the assumption u. <% (J   , that is, requirement (A)« 

An immediate consequence of the low density in the entropy layer is that 

the variation of pressure across it is small enough to be negligible« We can 

examine this from the equation of motion governing the momentum component in the 

% Note that under requirement (A), 9 « € for e  « 1 
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direction transverse to the layer. The fractional variation in pressure across 

the entropy layer is readily seen to be 

= o P      Ae-K 
_ w r. = 0 4L 

lea 

« / (3,3) 

and is therefore negligible according to our requirements. 

In view of the above conclusion we can now employ the simplification 

u   & Ü I 
r (3.W 

for study of the flow pattern within the entropy layer« The equations stating 

conservations of mass and entropy are 

(* 
3        _L „I-   3 

- T sir 9& ^)^/°*±("£+^&r)A"f>' 
T J 

Eliminating the density p    and making use of the simplification on u    and -p* s 

these two equations give an equation for ^r s or /w/tL   <• This equation can 

be integrated to yield 

7T=Y>>^^^ (3.5) 

for which the following boundary condition at the inner edge of the entropy layer 

(also the outer edge of the boundary layer) 

'nf/u.   = Yb fa) at   ^ s Vb (*0 
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has been satisfied. Patting d.su./dy for   ^/U   $    we can integrate Eq, (3.£) 

once again and obtain an equation for the streamline 

y - \ m\   AeW = •* (3.6) 

where n\    is a constant differing for each streamline» This equation should 

hold throughout the entropy layer» Applying it at the streamline boundary, 

Mr s Y W) 3    we arrive at 

[X>)-Yb60J  -/^ = constant. (3.7) 

This simple integral relation between the pressure and the cross-section area of 

the entropy layer is basic to our subsequent development.    The corresponding 

integral relation in the axisymraetrie case is 

Ya - Yb J   f^e - constant . 

The pressure -£u    is that at.the base of the shock layer, y = ye , and 

is given by shock-layer theory once V^ (/£) is specified,, This relation for -fae 

from shock-layer theory can be used to eliminate -p>^   in Eq, (3«7)j and we can 
« 

write down, at least in principle« an ordinary differential equation involving 

only Y • ^e shock-layer theory gives the Busemann formulas Eq» (3-1)s as a 

leading approximation. The pressure-area relation consistent with this approx- 

imation is therefore reducible to (from Eq, (3«7))o 

tt*-\)(WJ)'-constant. 

In carrying out a higher-order analysis (in e and t/lAZ &    ) , we should not 

19 



•fr 

only employ a pressure formula correct to the order desired s  but also work con- 

sistently with a more accurate pressure-area relation based on Eq. (3«7)» 

The constant on the right of Eq. (3°7) is necessarily related to the drag 

of the blunt noses as a consideration of the balance of momentum in the stream- 

wise direction will readily show,. With the help of the equation of continuity 

and making use of the small-perturbation requirement (A) 3  we can write for M>  1 

the equation relating drag and momentum flux as 

-9* + 
•fO Jy «v 

where Dv is the drag contributed by the pressure distribution around the small 

blunt nose'. The second term on the left of Eq» (3°8) then represents the drag 

contributed by the afterbody. The first and the second integrals on the right of 

Eq. (308) may be interpreted^ respectively$ as the internal and kinetic energies 

associated with the cross-flow field. As a result of the small-perturbation re- 

quirements 'the streamwise perturbation velocity u    does not enter into the above 

relation. 

In view of the drastic difference in the density between the entropy layer 

and shock layer, it is convenient to write the second integral on the right of 

Eq, (3»8) as 

The first-order g  correction to the Busemann formula has been given ex- 
plicitly by Freeman in Ref. 37•> 

The nose drag Dw has been defined as the total drag of a symmetrical nose5 
namely,, -V" = - Yo (*) <• ^n the case without top-bottom symmetrys PM/%    should 
then be taken as the contribution of one part of the surface which begins at 
the apex5 or the stagnation point, of the nose. 



,Y-    f>«rz 

2 
dnjs   -h 

nYs    f>„r- 

rs 

CCAJ^ 

The lateral extent of the shock layer Is generally of an order higher than that 

of the entropy layer, i.e», 

<Ys-yj:(Yc-K) = 0[<f+ /«'**]  ••/ 

whereas the ratio of density in the entropy layer to that in the shock layer is 

te' (e* ^*%e'~] 

As a result, the magnitude of the first integral is seen to be smaller than that 

of the second by a factor Pe.Jp     ° To be consistent with Eqs, (3«2) and (3»3)< 

we may omit the first integral in comparison with the second» Now,, if only zero 

and first-order terms are to be retained in the momentum-drag relation,, the 

kinetic-energy integral can, of course, be further simplified, and Eq» (308) 

may be written as 

V rY, 

^0 

+ 4**+*^ xX -M* (3.8a) 

which is correct to, and includes terms of, the first order of fe +  l/M*6 )   » 

The afterbody drag integral on the left is of the same order as -p1 Y  6 » Since 
b 

-p* <v /?   U  0    s    the second terms on both sides of the equation, as well as 

^(y - y ) , will be of order (<§+ \/f/\zQz) higher than the first integral 

on the right, and they can all be dropped in the leading approximation,, This 

agrees with the observation that for 6- small the number of degrees of freedom 
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excited becomes very large$  and most of the energy gained by the flow field ap- 

pears as internal energy «ä which is the remaining term on the righto 

Since the pressures in the shock and the entropy layers belong to the same 

orders we can replace the location of the shock by the base of the shock layer 

in the zero-order approximation, and the momentum relation Eq. (3o8)P to this 

approximation, is reduced therefore to 

That is, 

(X-Yb)(Yere')'=€ t^y» (39) 

This is the pressure-area relation pertaining to the zero-order theory previously- 

given j but with the constant now determined» For the axisymmetric case, the 

corresponding relation is 

a 
I ' Yb J |£ * Ye Y.'/z\    --  2 e D„/«fm U 

For the zero-order approximation, it seems that consideration of the 

momentum-integral relation not only determines the constant of Eq» (3„7)<, but 

also furnishes an alternativer, and apparently simpler, derivation of the pressure- 

area relation. For the higher approximation., however, we may find it convenient 

to use Eq„ (3«8) strictly as a subsidiary condition,» The constant in the 

pressure-area relations, Eq» (3°7) t  can te determined by passing to the limit 

y —>+0 in Eq„ (3.8) „ 

We may note that, on the basis of Eq. (3»9)> the pressure -^>e , i.e., 

(Y Y ')  * can never become negative» This; is to be expected since the shock 
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layer in our treatment is no longer required to follow the body surface» However, 

Eq. (3.9)) as well as Eq. (3.7), has not excluded the possibility of an attached 

shock-layer, and also contains the free layer as a limiting solution» We can see 

this readily by examining Eq» (3.9) for the nearly limiting situation of an ex- 

tremely small nose. The constant on the right of Eq. (3.9) in this case then re- 

duces to a very small but positive number» Now, for -p>^    to be finite, it is 

clear that the shock layer must remain essentially attached to the body, i.e., 

Y KH  Y . As soon as ^ approaches zero, the entropy layer will, accordingly, 

begin to thicken and the shock layer will detach to form a free layer. 

Discussion 

On the basis of the foregoing analysis, the fields of pressure and velocity. 

as well as the locations of the shock can all be consistently determined under 

requirements (A)-(C). We have arrived at these results without the need of 

simultaneously knowing the density distribution within the entropy layer, except 

for the fact that the density level of the entropy layer is comparatively low. 

On the other hand, the present theory actually affords no solution for the 

entropy fieldj to find the density or entropy in the entropy layer, certain de- 

tailed knowledge of the flow field around the blunt-nose region would be neces- 

sary. It must, however, be pointed out that the determination of density may no 

longer be a trivial matter for the present problem if the assumption of constant 

specific heats were removed» For, under this more general situation, the value 

of density would be essential for determining the local thermodynamic properties,, 

hence the local value of €    , which in turn will determine the pressure and 

velocity fields. In this case, it will be more appropriate to redefine f  as 

£ s f>/2f>&and the relation corresponding to Eq, (3.9) becomes (V s 0S or 1) * 
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The results of the above analysis confirm, in a certain sense, the validity 

18=20 
of the blast-wave theory for the tip-bluntness problem    « In spite of the 

fact that the blast-wave theory of Refs. 18, 19 and 20 does not take proper ac- 

count of the presence of the entropy layer, and gives erroneous values for the 

entropy and density near the body surface, the pressure and velocity determined 

by the present analysis of the entropy layer may be identified as those of the 

blast-wave theory, as an inspection of the governing Eqs0 (3«7) and (3»8) will 

readily reveal. 

Our general approach to the inviscid leading-edge problem is -also similar 

21 22 
to a treatment given previously by Chernyi $    , as pointed out earlier. In 

Chernyi's treatment, which is essentially a momentum-integral method, use is 

made of LL & U and -f3/ QJ -j>efo)°    The basic equations employed, written here for 

steady plane flows, are 

" "      (3.10) 

A = ^l0C%Y,r;) 
¥e note.that the first of Eq, (3.10), except for the first term on the right-hand 

side, is almost the same as Eq. (3»8a). It is evident that, as far as the lead- 

ing approximation for small g and I/M*0   is concerned, the above equation 

and Eq, (3»9) obtained by the present study are essentially equivalent. When 

the higher-order approximations are considered, we must compare Chernyi!s equa- 

tion, i.e., Eq, (3ol0), with our Eq, (3«7). We may note that, implicitly in 
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Eq, (3.10), the outer edge of the entropy layer has been replaced by the shock 

itself, and the Busemann pressure formula has been used. Hence, it is doubtful 

that Eq» (3«10) would yield a consistent correction to the leading approximation.. 

At any rate, the two treatments are seen to be quite different when higher-order 

approximation is considered. 

The entropy layer downstream of a blunt nose has also been studied re- 

cently by Guiraud^ >    , By an ingenious mathematical technique on which the 

writer is not in the position to elaborate, Guiraud has arrived at an equation 

which can be readily identified as the pressure-area relation, Eq, (3«7)? given 

above. However, Guiraud does not use the momentum-drag relation, Eq, (3<>8) or 

Eq, (3»8a), to determine the constant term on the right of Eq, (3«7), Instead, 

he relates the term to an integral involving shock curvature in the nose region. 

Hence, this term cannot be explicitly determined until the complete problem in- 

volving the nose region is solved. Strictly speaking, therefore, the results of 

Guiraud's study in Hefs, 1*2 and 1*3 do not fall into the same class as the blast- 

wave theory. 

The reason for the departure of Guiraud's treatment from the present one at 

the final stage of the analysis may be related to the remarks given in Ref. 1*2 s 

There, Guiraud observed that, for a flat-plate afterbody, Eq. (3,7) calls for 

^e oC Y  o If one assumes Y oC y , then 

A~(Hf«= -£• - 
and hence, 

Y_ ccr    * **<      • 

25 



•whereas the blast-wave theory provides Y od /p'* »   It was thus concluded that 

the momentum-drag integral relation which leads to the blast-wave result cannot 

he used to determine the constant since it appears to contradict the pressure- 

area relation,, Eq« (3<>7)j unless /—p-1  * It must be noted, however, that no 

streamline in a self-similar hypersonic flow field, except for those on the body,, 

can be similar to the shock surface, i«ee, Y oC Y  cannot be true« Otherwise, 

there could be no flow into the region between the shock and the body. In fact-, 

Eq«. (3»7) states just this fact« For, according to the blast-wave results«, 

Y oC /& '3 and -j&eoc f»s°C \Y /#)OC <&      }   "Wie streamline boundary for the 

entropy layer will then be given by the pressure-area relation as 

Y OC -f»e    OC ^     (Ap 4J ) 

The consistency between Y oC ^  and Y oC ^       £oT  SItta-u- t(U"b nonvanishing 

6 can indeed be checked by the results of the higher-order analysis of the shock- 

layer theorjr « 

Implicit in the foregoing discussion is the assumption that the physically 

meaningful solution to Eq» (3»7), when the leading-edge effect predominates, is 

oc  <&     o The fact that the blast-wave solution 

does not necessarily represent the complete solution to Eq» (3«7) can be seen by 

examining the corresponding equation for small £ in the case of the flat-plate 

afterbody, that is, 

Ye(u;j = * oN/^v 
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The complete solution of this equation can be readily found»  However 9  the only 

particular solution •which is compatible with the small»disturbance requirement 

zu 
turns out to be Y oc ^  « A detailed discussion of this point is given in 

Appendix I« For reasons of consistency, the solution to Eqs» (3«7) or (3*9) 

when bluntness dominates will be taken to be Y ac /£ '    throughout the present 
's 

analysis• 

In what follows, we shall apply the results of the above analysis to the 

problem involving both tip bluntness and boundary-layer displacement effects» 

The zero-order theory for small € and large M   6   will be developed in de- 

tail« 

* The existence of a complete solution, in this case, was called to the writer's 
attention by Mr. J. P„ Guiraud in a recent communication« 
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SECTION k 

THE ZERO-ORDER THEORY FOR INTERACTION OF THE BOUNDARY LAYER 
AND ITS OUTER FLOW UNDER THE INFLUENCE OF LEADING-EDGE BLUNTNESS 

The Governing Equations for Small e      and Large Y\zQl 

For small g  , the boundary layer has been shown to be governed by local 

similarity., and assuming;, in addition, the shock wave involved is strong, the 

simple pressure-area relation Eq» (3-9)  from the analysis of the entropy layer 

should also holdo Combining these results, the leading-edge problem of hyper- 

sonic flows subject to the tip bluntness and boundary-layer displacement effects 

can be treated in a rather straightforward fashion» 

To apply Eq<> (3 »9) to this problem, the inner edge of the entropy layer, 

Y. (^)    )    will be taken as an equivalent body surface which should account for 

the displacement effect of the hypersonic boundary layer. Inasmuch as the assump= 

tion LCö & U   is valid^* , the outer edge of the boundary layer may be approx- 

imately represented by the displacement thickness <5L. because of the extreme 

low density resulting from viscous heating» In this instance» we can replace Y 
b 

ky Yw </£) + &x fa)    '    ?y local similarity, $      is given by Eq» (2 „3) explicitly 

in terms of the pressure distribution, which is now provided by the Busemann 

formula. 

The equation governing the zero-order approximation, that is, the leading 

approximation for small 6 and large MZ6Z   >    is, for the plane flow. 

5„ = e (o. 664 + I.J3 £L) 

(U.i) 
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After solving Eq» (li.l) for Ye ,    we can determine the pressure from the 

Busemann formula and. the heat=transfer rate as well as the skin friction from 

Eq« (2.3). The rudimentary manner in which the three flow regions =•= boundary 

layer, entropy layer,, and shock layer ~~ interact is contained in the ordinary 

differential equation given above» In the absence of tip bluntness, we have only 

the shock layer and the boundary layer« The first of the above equations then 

becomes 

Ye = Y + £ 

and Eq» (U»l) reduces to 

f __ 

(lie la) «CV.-Yj[/VtT]'= e (*"•*'• 7»^-^ 
*/3 Near the origin, /jL~ + Q  , Eq<> (lul) admits the singular solution V' ^ /p 

This is the correct behavior when the blast=wave effect of the leading edge is 

19 20 
strong 3    , and confirms that near the leading edge the displacement effect of 

the boundary layer gives way to the more powerful effect of leading=edge blunt- 

ness. For cases which do not involve bluntness, Eq« (lj.„la) reveals singular 

Sit* behavior of another type s as ^ —>• 0 , Y  ,-^> ^ '4 „    This is the behavior to be 

^ 6 9 
expected when the displacement effect predominates s  9   „    With these singular 

solutions as leading terms, solutions to Eq. (iiol) can be obtained by a forward 

integration from the origin. These asymptotic solutions for Ye  , as well as 

the pressure and the heat transfer, will be examined subsequently for flat-plate 

afterbodies» 

For Eq» (lt»l), we shall assume that as <# —>0 , Vw ^J <p    , where cr  > z/s    » 
For Eq. (l;,la), we assume that as <£—»0 , Yw ^ ^ °~ , where cr > 3/4.   .    In 
any case, assuming a regular afterbody shape, i,e«, V\ <v /p   as ^—$»+0 , 
will be sufficient« 
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As is obvious from the requirements  (A)-(C),  the error in the zero-order 

theory is presumably of the order 

0  \_  , / 
€   +•   TTT7T2-   + ±(e) 

If terms of the next orders are consistently included in the analyses of the en- 

tropy layer and of the boundary layer, in the manner previously described, the 

first two error terms may presumably reduce to S2 and \/V\*Q* • 

In view of their frequent occurrence in the later development, it is con- 

venient to introduce two new variables for the plane flow, 

K   -   M36 J> 4 
0u2) 

where 

Vs e^GG^I.n^)^/^ 

Re = <°-U*-. 
/A CO 

Except for the factors 6 and 6 (0,66h + 1,73 X^/T0 )   , these two variables are 

l-2li 
those employed previously for the bluntness and the displacement problems   . 

In what follows, the zero-order theory will be applied to the problem of a 

flat plate in hypersonic flow subject to the three effects of bluntness, dis- 

placement, and angle of attack. In order to see clearly the manner in which these 

effects will act in combination, the simpler problems involving only two simul- 

taneous effects (namely, K — %   s %   - M<x $  K —V\oc)  will first be singled 

out for discussion» 

The Flat Plate with Bluntness and Displacement 

For this problem, Eq» (li.l) can be reduced to 
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2 fe ?'/-/£•£'     =/ :u-3) 

where the new variables are 

Z  =ÖM  [?*/^]    Ye/4* 

C= /£ ^. A a/3 

j 

Note that both   K€ <* (= A? Vit) and   2g/4;     s 6  (oo66it + 1„73 ^-) M*c/&Re, 

are independent of   /#   .    Therefore, 2    and 5"    are proportional, respectively 

to   Y    and   ^   o    Let   <p s. 2-/2   and   X = cL<j)/dE «    Equation (I|<,3) may then b 

written 

^   A   dx/d(p    - f\       = / 

which can be integrated by a separation of variables to give 

# This result provides the desired behavior at the origin, namely Ye /X/ "P a£ 

#—^0 . To obtain a relation between £ and ^ , we note that 

d^ =4|. ^ =  / A4. dx d 0 d X 

and the solution of Eq<,   (2j.«3)  can finally be brought to the parametric form 

Z =  2/2 [/!"- A/2 * A/A/6  ->&*(/*/T)] 

9 

+ &jL,(i+ix)-+iru(!+Jz)+2[i«,0+</T^ + •¥= 

(iiA) 
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This result for    Y      s    which may also be taken as the shock location   y^ 

ie presented in Fig,  3(a)  as   M|VA1  Ye/K ¥    vs»   %   /K ^   •    The corre" 

sponding surface pressure and the' surface heat-transfer rate are given in (b) 

and (c) of the same figure as   [j^A *] VW^o fco and   e   (o, 661; + 1.73  ^ J X 

K /2r     M /0fi/7'/ ' We can see that  Ye, varies as &     as ^—^"<w » 

and as /)6%'z    as /fi—>0 „ These two limits correspond to situations in which 

displacement and bluntness dominates respectively, agreeing with strong-interac- 

tion theory in the first case and strong blast-wave theory in the second. One 

important feature here is that-all parameters and spatial variables are grouped 

together to form one single variable X   / K °    ^rom ^-S«  3 we see that 

transition from the strong blast-wave to the strong-interaction regimes occurs 

in the range 

I0" < Z6/K*
A
   <    2 

A variable analogous to %   /C     , which controls the combined effect of 

bluntness and displacements  has been previously pointed out by Lees and Kubota 

2 
in a discussion assuming a weak nose effect . 

The appearance of 'Y   and ~/f~  in the nondimensional forms of pressure 

and heat-transfer rate introduced above result from the use of the Busemann for- 

mula 

iG-froB u t'/iL-KM   = 
-    • •   .a 

Y: * t ri 

Retaining the factor tf    s    instead of replacing it by unity, is in keeping 
«to 

with the convention of existing shock-layer theories    , Furthermore, it per- 

mits 6 to represent conditions behind the shock even when £^_   is not small, 
Co 
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It is of interest to examine more closely the asymptotic solutions» They 

can be written, for large and small 
*./*« 

s respectively, as 

0.664^3 ^M^/fe ^ = 0.2/9/^7 ; 0.//90O* 

(U.*) 

The appearance of \      in the above strong-interaction solutions indicates 

clearly the roles of €    and the wall temperature level, In view of the factor 

(0,661; + 1°73TW/T0)    in %     »    the boundary-layer displacement effect will de- 

pend strongly on the wall temperature. An interesting observation is that if 

we simply add the two asymptotic solutions for -ft^/fi/   , the sum differs from 

the exact solution in the transition region by less than 12$. This seems to 

lend support to the empirical linear-combination laws proposed previously by cer- 

29-31 
tain investigators    , at least when 6    is small. 

We may now compare the zero-order solution in the two limits with the cor- 

responding self-similar solutions which do not assume Y    close to unity. In 

Tables II and III, results from a few of these existing solutions6»!7,20,2l;,26 

for Y -  1.1|0 are tabulated and compared with those of Eq. (U»5) • Some of these 

results are also shown in Fig, 3. We may conclude from these comparisons that 

as an approximation for the^surface_pressure and skin friction when •/ - 1.1; , 

the present zero-oj^er_^soj:utaon jnay^not bj^^guate, and a higher-order solution 

(in 6    )  appears desirable. For the surface heat-transfer rate as well as the 

shock shape, however, the zero-order theory works reasonably well, in spite of 

the fact that -/ in this case is actually not too close to unity. 

/ 
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The Inclined Flat Plate with Boundary-Layer Displacement 

With bluntness excluded,, Eq.   (hola)  can "be transformed to 

where the variable 2-     and   £    now stand for 

2 = 4MV|3   Ye/%** 

5=4 "MV/J 

The angle of attack of the plate, o< , is positive for compressive flow over 

the plate» The negative sign in front of C in Eq» (ij.»6) applies to oc > 0 , 

In view of the strong shock requirement, our solution for oc <£. 0    pertains only 

to the situation when the boundary layer is thick enough to induce a strong bow 

shock. This implies that the region of validity is confined to certain upstream 

portions of the flow field, and to a rather small range of negative oC   . ; Again, 

a a / 
there is only one variable governing the problem,, In this case, it is Moc/Z 

Equation (h*6)  appears to be quite different from that underlying the analysis 

1 7 10 
of Pai and Shen *  *     , The difference presumably arises from the use of a dif- 

ferent formula for the pressure. 

For the case of cK > 0 the asymptotic solution of Eq» (i|«6) for large 

M OC /%     3    i.e., large ^ , is simply that for a wedge without displacement 

effect, i,e o o O 

V<äS^" [    (lul) 
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For small argument of the variable, the strong-interaction solution results,, as 

given previously in Eq» (lu5), When the wedge angle is sufficiently small-, or #, 

small, the incidence effect amounts to only a small perturbation on this solu- 

tion« We may then write Y     or y  as 

This development near the sharp leading edge is valid for both oC > 0 and 

oC<0    , and reveals a pattern of asymmetry. The curves for OC > 0 presented 

in Fig» 4 give a smooth transition from the regime of strong interaction to that 

of a usual hypersonic wedge flow. Curves for oC < 0 in the same figure show a 

gradual deviation from the Stewartson-Lees solution as we go downstream. For the 

shock shape and the pressure, the range of transition for 06 > 0 appears to 

occur in 

/o~z< Mzocyz€ < io 

whereas for the heat-transfer rate, the value, corresponding to the pure wedge- 

flow solution is closely approached as early as M oc/%     - 2  » From the agree- 

ment of our zero-order solutions with the self-similar solution for */ -  loij.0 in 

the two limits (see Fig, h), we may anticipate the zero-order results to be rea- 

sonable for heat transfer, pressure, and shock shape, provided the surface tem- 

perature is substantially lower than the stagnation temperature. 

The numerical results of Fig» h were obtained by digital-machine computation 

(IBM 70k))  using an interval of 100 points per unit of (£) 
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The Inclined Flat Plate with Tip Bluntness and the  Corresponding Problem 
of a Blunted Cone 

For the inviscid problem of the blunted flat plate at incidence with neg- 

ligible boundary-layer displacement effect, we have from Eq„   (1|„1) the simple 

differential equation 

(Z   +   Ofe 2')' =   / flu?) 

where the variables 2 and ^ now stand for 

In this case, we again use the same convention for oc   . 

For the purpose of later discussion, we will examine in detail the asymp- 

totic behavior of the solution of this inviscid problem for small and large £ 

Near the leading edge,, we find from Eq» (k»9)  the desirable result 

y4*(i)W'(fAi«(#-) 
which holds for both positive and negative ®C   and reveals an asymmetrical per- 

turbation of the blast-wave solution«. At the far downstream end, where the 

effect of the surface incidence dominates, we will develop the asymptotic solu- 

tion only for oC  > 0 . Equation (li»9) then yields for large £" 

£ & S+'+j^\AJ0(2/z) + BYr.(2/T)_ (U.ii) 

where A    and Q   are constants, and J_, and  Y  are Bessel functions of the 

first and second kind of certain order CT . In view of the first and second 

terms we see that the shock will tend to the wedge surface, but never quite reach 
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it,, as we go downstream. Most interesting is the oscillatory behavior of the 

solution. According to the asymptotic behavior of the Bessel functions, the 

third group of terms of Eq. (lj.,10) is equivalent to 

J^fc <CO* (2  /f > ß) 

The corresponding behavior of the pressure is then 

Evident from Eqs. (1;,11) and (It, 12), this oscillatory decay of the tip-bluntness 

effect will be more readily revealed in the pressure distribution than in the 

shock shape». The results obtained from numerical integration of Eq, (h°9)  by 

digital machine computation' are presented (as the full curves) in Fig, 5>, The 

oscillatory decay of the tip=bluntness effect is indeed exhibited by the pressure 

distribution for OC > 0 . 

It may be of interest to point out, in this connection, that the solution 

to Eq, (k°9)  can be approximated surprisingly well by the equation 

!- = (z. Z.') = l + j^]0.59 Jl/3 (Z /C)- Or,7% (2 /T) (U.12a) 

which is also included (as dotted curves) in Fig, 5. The^funetion 1? given 

above not only agrees with the asymptotic solution Eq. (it.11) for large £ , 

but also has a singularity at £= 0 identifiable as that of the blast-wave solu- 

tion. In addition, it satisfies an integral relation of the differential equa- 

An interval of 100 points per unit of (C) was used in the computation. 
The heat-transfer rate, which is not presented, may be obtained in terms of 
the pressure from Eq, (2,3)» 
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tion Eq»  (h*9) $ namely' 

f Z-£ 
/ rfg    =/ 

The physical significance of the oscillatory decay observed from the above 

analysis should,, of course, be taken with caution. The result of the zero-order 

solution in this respect is evidently connected with the passage to the mathe- 

matical limit,    if—^l  . Apparently the oscillation represents a repeated re- 

flection or skipping of the reattaching shock layer as it reaches the vicinity 

of the surface of a very slender afterbody at infinite Mach number» The phenom- 

enon may hence be interpreted as a form of glancing reimpingement of the shock 

layer«, From the very fact that this oscillation is a decay phenomenon, its de- 

tail may probably be substantially altered by higher-order €    corrections» For 

lfm  loUO, in reality we may not have any oscillation in the pressure decay, since 

the amplitude of the fluctuation shown is never large» 

For the purpose of comparing the afterbody effects in two and three dimen- 

sions, the results of a similar analysis applied to a blunted slender cone will 

be briefly discussed. The basic differential equation corresponding to Eq. (k*9) 

for this axisymmetric problem is 

with 

2 = 2oc.Y*/&I't       } 

"7/ „/ 

•Ni- 
\JC^&U 

This approximate analytic representation of the solution to Eq» (k»9)  was 
pointed out to the author by Professor H» Pollard of Cornell University» 

38 



where  <?c   now stands for the half-cone angle,   t    the nose diameter, and Jk,   the 

nose drag coefficient 

o   _ &N  

The peculiar manner in which the shock layer approaches the afterbody is more 

markedly revealed in this case than in the case of the blunted wedge» From the 

results for shock shape presented in Fig. 6(a), we see that the changeover in 

the vicinity of QC/£,/-/<[%, t =/ occurs rapidly, as if the detached shock layer 

remains essentially unaware of the presence of the afterbody until reaching the 

immediate neighborhood of the cone surface. On the other hand, the corresponding 

surface pressure, as well as the surface heat-transfer rate (calculated on the 

basis of local similarity for the laminar boundary layer), given in (b) and (c) 

of the same figure show a much earlier influence of the afterbody« The oscilla- 

tion in pressure, decaying as a Bessel function, is again found, but in a rather 

manifested way. We should note that in this axisymmetric case, the first pres- 

sure undershoot, and the oscillatory cycle immediately following it are so pro- 

nounced that their occurrence may not be too surprising even when g is not as 

small, and the shock not as strong, as required by the zero-order approximation* 

This peculiar behavior of the pressure distribution may be quite meaningful for 

studies of the influence of bluntness on boundary-layer instability. The pres- 

sure undershoot has, in fact, been observed experimentally for slender blunted 

cones at M-*6.8J in air53, 

£  22 
The undershoot of cone pressure has been predicted previously by Chernyi '  , 

using an integral method discussed in Section 2. For the inviscid flow past a 

blunted cone with •/ = I0I4O, Chernyi finds a strong overshoot following the pres- 
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sure undershoot.    The Bessel function decay is,  nevertheless,  not found.    In a 

21 similar treatment for the blunted wedge    , there is no pressure undershoot,  ac- 

cording to Chernyi's result.    The difference between the present solutions and 

Chernyi's presumably results from the difference between Eqs.   (3»9) and (3*10). 

The Combined Effect of Bluntness, Displacement and Body Thickness 

For the flat-plate problem involving all three effects    {%   >    K     >    and 

M  oc)   5 we find that a new parameter appears in the reduced form of the  solution. 

If we choose to use, for example,. 

Z = 8M 

t = 16 

*:/% Ye/^e *) 

w* ~x& 

Eq. (Uol) for this problem becomes 

where   p    is a parameter (independent of  /j£   )  given,  for the wedge flows,  as 

(U.iU) 
p -    K* Mot 

Figure 7 gives the results of integration for the  surface heat-transfer rate in 

the same variables as used for the zero-incidence  case,  i.e., Fig.  3(c).    Shown 

-2 
are curves corresponding to five positive values of p , namely, P = 0, 10 , 

-1 
10 , 1, and 10. The curve for P  ~-  0 has been previously given in Fig, 3(c), 

Similar calculations may also be carried out for negative values of p . 

From these results we can see the role of the wedge angle in modifying and 

controlling the combined effect of the bluntness and boundary-layer displacement. 
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The slight oscillatory mode revealed in the curve at the upper left corner of 

Figo 7 for P  - 10 corresponds to the oscillatory pressure behavior discussed 

previously for the inviscid wedge problem. The results show that when P is 

not too large, the oscillatory phenomenon will subside as a result of the 

inviscid-viscous interaction. 

Hypersonic Similitude Based on the Zero-Order Theory 

From the flat-plate problem, we see that the zero-order solution is redu- 

cible to a function involving only one variable and the parameter P . Viscous 

hypersonic flows over a blunted inclined plate will accordingly be similar for 

the same P    , For thin bodies other than flat plates^ we have from Eq- (liol) 

the following similitude involving tip-bluntness and boundary layer; For similar 

bodies generated from the same equation 

L/rL =f#) 
the following correlation applies? 

M 
</K« 

K*A 

Y./K** 

•ftr/K, A p (U.35) 

e((X66+ + 1.73 ^j 

where -f represents the functional dependence concerned» Two alternative forms 

of Eq„ (Uo15) can be found in Appendix I. 

It is essential to realize that the above correlations do not imply the 

possibility of obtaining the full similitude for the entire flow field, which 

should then include the density and temperature fields within the entropy layer. 

The latter flow quantities in the entropy layers have been excluded from the 
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present framework of study*, however» These correlations based on the zero-order 

theory., Eq« (k>l$)»  will be subject to the. same errors as Eq» (lul)s ioe0 

The most serious among these is presumably that associated with <f   . Implicit 

in the above results are also the assumptions of the linear viscosity-temperature 

relation» unit Prandtl number« as well as uniform 17.,/T    « Thus for a more ae- 

curate correlation under more general conditions, the similitude based on our 

zero-order theory may not suffice. As a part of the study complementing the 

foregoing analysis, an examination of the hypersonic similitude under less re- 

strictive conditions will be given in Section £„ 
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SECTION 5 

THE VISCOUS HYPERSONIC SIMILITUDE INVOLVING 
LEADING-EDGE BLUNT NESS* 

For both experimental investigations and practical applicationss  laws of 

similitude for correlating flow-field properties under different free-stream 

conditions and body dimensions are desirable« The similitude arrived at pre- 

viously in Eq. (l;.l5) is simple but. restrictive. In the following,, the more gen- 

eral viscosity-temperature relation Li oCi±s  assumed^ the Prandtl number is 

taken constant but otherwise arbitrarys and the body surface temperature is arbi- 

trary. A perfect gas with constant specific heats is still employed but the 

specific heat ratio is no longer required to be close to unity. 

The inviscid hypersonic similitude which takes into account the effect of 

slight blunting has been given by the author . In a recent paper^ Hayes and 

Probstein  consider the similitude of hypersonic boundary layers. From these 

two studies a viscous hypersonic similitude involving bluntness is not difficult 

to infer. Hayes and Probstein caution, however, that the similitude involving 

bluntness may not be extended to the viscous case9  or only under a condition so 

restrictive as to make the result uninteresting. In view of this., an examination 

of the basic requirements which underlie hypersonic similitude seems proper at 

this point» 

Basic Requirements for the Validity of Hypersonic Boundary-Layer Similitude 
Involving Tip Bluntness  ""   "   "  

Hayes and Probstein observe that the hypersonic small-disturbance theory 

necessarily fails in the vicinity of the blunt nose itself, and it would appear 

A certain part of the study presented in this Section is based on unpublished 
work on the subject which was sponsored by the U. S„ Air Force Office of 
Scientific Research (Mechanics Division). 
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that the theory, hence the "equivalence principle" deduced from it, would break 

down in the layer of fluid of increased entropy nearest the body« It may then 

follow that hypersonic similitude cannot hold within the entropy layer as well 

as the boundary layer beneath it. The major conclusion of our following discus- 

sion is that a full similitude capable of correlating the density and temperature 

distributions near the outer edge of the boundary layer is not possible, but 

correlations for the pressure and velocity fields, as well as the density and 

temperature distribution within the boundary layers proper, do exist,, 

Let us first examine whether similitude can exist in the inviscid flow re- 

gion» On the basis of our discussion in the earlier part of Section 3<> we see 

that under requirement (A), the approximation U. ?6 [) holds throughout the in- 

viscid flow region including the entropy layer. The applicability of the require- 

ment (A), and the degree of approximation involved, has been examined. From the 

fact that U ?d (J  we can conclude that the pressure ~&   and the velocities /V 

33 and UL   do obey the equivalence principle, and hence the hypersonic similitude . 

For the density and temperature in the entropy layer, however, the "equivalence 

'principle1* may not be strictly applicable since these quantities may depend on 

the entropy determined upstream at the nose shock. 

For the boundary layer, we observe that, with the wall conditions specified, 

the solution will be completely determined, by the three quantities at its outer 

edges the pressure -p^    , the total enthalpy M&(=  H^) $    and the velocity 

Us  o    To be sure, for determination of the boundary-.layer solution, the speci- 

fic knowledge of flow density or temperature at the outer edge is actually not 

necessary. Following essentially the same procedure as Hayes and Probstein in 

examining the system of equations governing the boundary layer, we find that the 
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condition required for the existence of boundary-layer similitude is that the 

quantities -^ , H9    and H8   must obey the equivalence principle in the outer 

flow. But, under requirement (A), and for M    large«, this condition can indeed 

be satisfied. In particular, we have ULS zj {J  , A similitude can therefore ex- 

ist in the hypersonic boundary layer. We may note that the actual magnitude of 

the error in the heat-transfer rate* the skin friction, and the displacement 

thickness incurred by the approximation U.J.-& U  will not differ a great deal 
o 

from AaJV In facts if we assume local similarity (which is appropriate 

for the present application) the corrections to these quantities will be, respec- 

tively, -1/2 s -3/2 and +l/2 of   AuVu I 

We may hence conclude that,, for a perfect gas with constant specific heats 

and a viscosity-temperature relation yU. SCTJ    with the exception of the dis- 

tributions of density and temperature in the outer flow, the classical hypersonic 

similitude of Tsien and Hayes can be extended to the boundary layer, even under 

the influence of the leading-edge bluntness, provided the flow regions imme- 

diately downstream of the leading edge are excluded and the flow Mach number is 

sufficiently high, i.e.   • 

? t if 

T(6)      «I M»l 

When the bluntness effect is not present, the requirement will presumably be 

less stringent. 

3    f- 
The tip-bluntness effect introduces an additional parameter fAA~  into 

% 

the boundary-layer similitude discussed in Ref. 55» The similarity laws correla- 

ting shock shape, surface pressure, surface heat-transfer rate, and skin friction 

>in plane flows may be written in a form comparable with Eq. (lw£) for the zero- 

order theory? 
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M[</K<Jys/Ke* 

6 10.664+/.J3 If- 

€ (p. 664+1.73 lj£ 

with 

oo 

Kg 

Kg 
if * 1«« 

•• A) // 3so 

= f ̂ Ä 
L^y ?P;-^-;/^;fP (5.1) 

-f(f) 

We see that the simplicity gained by the zero-order theory, which assumes a very 

strong shock and a very small g , consists essentially in the elimination of 

the parameters "/  , T^/T0   
and "& /K'  ° Alternative forms of Eq, (5.1) are 

given in Appendix II as are the similarity laws for axisymmetric flows. 

There are two important limiting cases of the similitude given above« One 

is the case of negligible boundary-layer displacement effect, the other that of 
2ta/___ 

a very strong shock wave. For the first, the interaction parameter /*/ /jRe 

will become merely a scaling factor, and we have 

A  discussion of the second case follows. 

Hypersonic Similitude Involving Strong Shock Waves 

For this case, we require the shocks to be very strong so that terms of 

y-t 

i(e)' Y 
and iM V 

may be neglected in comparison with unity. From the viewpoint of practical ap- 

plication, consideration of this special form is not trivial. The only essential 
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difference in basic requirements between this similitude and. that of the zero- 

order theory is the condition on -f  » The zero-order theory furnishes results 

in a convenient form for comparison with experimental data correlated by this 

similitude. 

Under the assumption of a strong shock., the Rankine-Hugoniot shock condi- 

tions may be simplified,. Using a suitable affine transformation, we arrive at 

a form of similitude comparable with Eqs«, (ij.<>l5) and (5«l)s 

2 
M 

-i a 

VA YV*C<* 

e(ö.661 +IJ3 ^-j 
rfC/" 

.A 

MM,r>/,°'* 
(5.2) 

•with 
Y,/VL 
'W 

X A 
Comparing this -with the more general similitude of Eq. (5*1)$  we see that in 

the above form of similitude the dependence on the parameter 

on JtRet 

VA.~ or 

f^\    ,   becomes very -weak as a result of the shock being very 

strong»   On the other hand, comparison -with the zero-order result, Eq»  (It«15) $ 

shows that as a consequence of relaxing conditions on    Pr   $  cO   s    and   £    ,    we 

have now to include as invariants the parameters    F?-   >   cd   >    e   s    as well as 

~\,/T   *   The dependence on  •/   and on  %,/J^   3-n "k*16 strong-shock similitude 

cannot be too strong, however, since both parameters are associated with the 

first-order   6    effect. 

U7 



SECTION 6 

CONCLUSION 

A theoretical study has been made of combined leading-edge bluntness and 

boundary-layer displacement effect in hypersonic flow over thin bodies«. Through- 

out the investigation, a continuum flow of perfect gas with constant specific 

heats is assumed. An approach has been developed based on a flow model consist- 

ing of three adjoining regions; an inner laminar boundary layer, an outer 

(detached) shock layer, and between these two regions, an entropy layer,, Solu- 

tions for this flow model have been obtained by considering the mutual interac- 

tion of these three regions under the requirements of the hypersonic small- 

disturbance theory and the shock-layer theory» In the boundary layer, a small 

perturbation procedure in € -      , is developed #iich gives the local similarity 
7+1 

result as a leading approximation» In the entropy layer, the low density leads 

to the simple pressure-area relation Eq« (3«7)« In the detached shock layer, 

the results of existing shock-layer theory are applicable» The aero-order ap- 

proximation in this approach corresponds to the classical result of Busemann« 

In the theory developed for the leading approximation, the problem of hyper- 

sonic plane flows over a thin body of an arbitrarily specified shape is reduced 

to one governed by a second-order ordinary differential equation, iee« Eq« (lj.ol)« 

The simplicity of this equation permits solutions to numerous problems of inter» 

est, including the combined effect of leading-edge bluntness, boundary-layer 

displacement, as well as surface inclination» Continuous transitions are exhi- 

bited between limiting solutions which agree with existing blast wave, strong 

viscous interaction, and hypersonic wedge theories for small 6 » Application 

of this zero-order theory to the case of finite €    , namely •/ - lol+O, shows a 

rather small discrepancy from the exact solutions, as far as the surface heat- 
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transfer rate and shock shape are concerned,, One interesting feature found for 

inviscid flow over a blunted wedge or cone is an oscillatory pressure decay over 

the afterbody surface* The result can be interpreted as one limiting form of 

shock-layer reimpingement at glancing incidence* It may also be related to the 

"pressure undershoot" observed in experimental studies of hypersonic flow over 

blunted slender cones,, and could be meaningful for studies of bluntness induced 

boundary-layer instability* 

For the pressure and skin friction* a (consistent) first-order e   correc- 

tion to the zero-order result appears desirable* The procedures for obtaining 

higher-order approximations have been formulated in Sections 2 and 3* 'While ex- 

plicit solution to the boundary-layer equations for the higher-order correction 

is presently not available, simple and effective methods.» such as that of 

Ref • k93 may be applied for this purpose* It may be pointed out that the results 

obtained herein are also applicable to a thin airfoil of arbitrary planform via 

the "strip theory"* The consistency of this strip theory with the present ap- 

proach has been pointed out in Ref* Ip. and discussed more fully in Ref* 56* 

Hypersonic similitude has been examined in Section 5 for the present prob- 

lem where both bluntness and boundary-layer displacement effects are present* 

The classical similitude of Tsien and Hayes can be extended to include these 

effects for the correlation of pressure and velocity fields* as well as flow 

quantities of interest within the boundary layers proper* provided the -vicinity 

of the small blunt nose is excluded* For flows involving strong shock waves«, a 

simplified similitude is obtained« The zero-order results$  which require a 

strong shock and also small £ s   may be readily compared with experimental 

data correlated in this similitude« For consideration of experimental verifica- 

tion of this similitude and comparison of the experimental results with the zero- 

order theory* the reader may refer to Ref* h$» 
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APPENDIX I 

ON THE COMPLETE SOLUTION TO Y (Y Y'/ =eit^ 

Throughout the study presented in the text, it is tacitly assumed that 

the solution to 

(%~yJ   'fe * constant (I01) 

. ik 1-3 
behaves like y /vy ^   > as required by the existing blast-wave theory  , 

This implies, for the special case */•—>\    and Y = 0 >    that the only solution 

of 

WXU***/* (1.2) 

admissible to the present study is that of Eq. (Uo!?) of the text,, i„e0 

$)(Utf + *   • (1.3) 

On the other hand, a complete solution can actually be obtained for Eq. (I»2), 

which not only includes the blast-wave result Eq. (l°3), but also exhibits the 

feature of a "free layer" in the limit of y,—j>0 . It thus appears that by 

employing the complete solution, it would be possible to describe, in analytic 

39 terms, the transition from Lighthill?s free layer  in the neighborhood of a 

blunt nose to the blast-wave dominated region far downstream» However,, as far as 

application to the present problem is concerned, it is also essential to examine 

the compatibility of this solution with the small-perturbation requirement (A) 

which underlies Eqs, (1.1) and (1.2)« The main conclusion of the following dis- 

cussion is that, unless the small-perturbation requirement is removed, or relaxed, 
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the improvement gained by using the complete solution cannot be established, and 

the particular solution pertaining to the existing blast-wave theory appears to 

be the only valid result under requirement (A)-(C)« Below, the complete solu- 

tion to Eq. (I»2) will be presented first, and the question of consistency with 

the small-perturbation requirement will then be examined» The existence of an 

explicit integral form of Eq« (l<>2) for the complete solution was pointed out to 

the writer recently by Mr« J«, P» Guiraud of ONERA, France« 

For convenience, we shall drop the subscript e from Ye <,    Since the 

differential equation, Eq„ (Io2)j does not contain the independent variable •p    , 

we may let -p/ - YY , and the equation can be integrated to yield 

that is, 

YY' =/elt(Y+Q 
Ci.U) 

Integrating once, after separation of the variable,  one has the complete solu- 

tion 

(Y+C,)- 3C, (Y+C/= i -JTM (* + cz) 
Cio5) 

For large ^ , Y >^> C,  , Eq<, (l»5) provides the blast-wave result, 

i.e., Eq„ (l»3)» Now, for sufficiently small <# , Eq0 (lof?) may be developed 

for Y <^ C,    s    namely 

+ — 
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We see that the constants C,     and LL have to be related as 

and, what seems to be more significant, that, for small ^ , 

This is no more or less than the equation of a free layer. Now, if the domain 

of validity for the solution in the blunt-nose region and that for the hypersonic 

small-distance theory should join, the above asymptotic solution for small %, 

must be identified as Lighthill?s free layer in the vicinity of the leading edge. 

Accordingly, C, belongs to the order (t/€j&)   , so that the equation for the 

free layer may be written as 

Y^W*'.... ^ 
(1,6) 

y <z -  O(i) 

The above relation implies that the shock layer detaches from the body at ^-=0(t) 

with d>Wm,$~0(\)  • The complete solution may now be expressed as 

V + (cut/eJkj\    - 3 {at/eJk)  [V + (a*/eJLJ\ '' 

(1.7) 

The blast-wave results Eq.   (1.3)j would be obtained from Eq,   (1.7)  by neglecting 

terms of the order {CLL/eJkY)   , 

The question of whether, and when, the more complete  solution Eq.   (I,7)  is 

compatible with the small-perturbation requirement (A) will be examined«    In this 

respect, the asymptotic solution for large  {^Jk^/dV)    ,    i.e., the blast-wave 
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result, has been studied in Section 2 of the text* where the range of its validity 

has been established,,    We shall, therefore, be concerned with two remaining ques- 

tions:     (l)  can requirement (A) be satisfied, when the difference between Eqs. 

(1,7) and (l«3) is not small, and (2) when the blast-wave solution dominates, does 

the contribution from the   tZ"t/6jtX     terms belong to an order lower than that 

of the error in the hypersonic small-disturbance theory, 

The first question amounts to 

if     elY/at £   OO) >     ") 

Since   €JhY/at ±  OO) ,   V= O &'****]      >    and 

&9 = °(T>-^Y°(^^OU) 

(1.8) 

(1.9) 

Hence, 

fcLY_ 
.2    y 

z   i 
± 0(el)   *    = OO) (I.10) 

Therefore, when the free-layer character begins to predominate the solution for 

flat-plate afterbodies, the small-disturbance requirement cannot be satisfied. 

The second question concerns 

if    6 AY/at    »I 

Since   eJkY/ot  » \    ,    Yro(eJkttt*3      ,    and 

(loll) 

(1.12) 
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thus 

*¥ 
^, 

fat 
7 

JLL 

jsr, = 0 
X   / 

»/ 
£i 

eJkXj 
(1.13) 

Therefore, the (ß^/g^V) terras in the blast-wave dominated range are too small 

to be considered as a valid improvement of the small-disturbance theory» 

Our conclusions ares  (1) The complete solution, Eqs„ (l.-5>) or (l»7)j exhi- 

bits an apparently realistic behavior of the detached shock layer over a flat- 

plate afterbody, providing a transition from the Lighthill's free layer to the 

blast-wave solutions  (2) Unless the small-perturbation requirement (A) is re- 

moved, or relaxed, the complete solution cannot, however, represent an improve- 

ment over the existing blast-wave result;   (3) The solution may, perhaps, find a 

valid application to the corresponding problem in the "piston theory" where the 

small-disturbance assumption is not required« 
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APPENDIX II 

ALTERNATIVE FORMS OF HYPERSONIC SIMILITUDE FOR CORRELATING 
SHOCK SHAPE, DISPLACEMENT THICKNESS, SKIN FRICTION, 
SURFACE PRESSURE AND HEAT-TRANSFER RATE IN PLANE 

AND AXISYMMETRIC FLOWS 

On the basis of the hypersonic small-disturbance theory and the boundary- 

layer theory for ideal gases with constant specific heats, constant Prandtl's 

number and the viscosity-temperature relation Al oC I    , similarity can exist 

among flow fields around thin or slender bodies» For bodies having similar 

shapes and similar surface temperature distributions, l«e0 

TW/T0 

17 (n.i) 
'0 

one may thus correlate the corresponding shock shapes, surface pressure and 

heat-transfer rate as 

MYJL 

where a- and fi    represents arbitrary functions of the variables involved, dif- 

ferent for different flow quantities» The displacement thickness of the bound- 

ary layer ÖL and the skin-friction coefficient /C„    can be correlated in the 

same forms as for the shock shape Ys and the coefficient of surface heat- 

transfer /Cu 3    respectively, and therefore will not be repeated hereafter« 

It may be useful, for application in experimental studies, to consider cer- 

tain alternative forms of the similitude cited» A few of these forms, with 

Eq» (II»1) unchanged, are given belows 
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*•*,* *y>« M r 

Y/TL 

^A 

M" i »+•> t 

•-f f~J VV&T ; ^~l^; Mr ; -A *o ? FV ) (11.2a) r 

2. .Z. 

-rrj       H   'Otf 

far)"• 

<£ = f f-ri [Mr] VKS   , P ,TI> & >^>Pr) (n.2b) 

/yk MV 
,4   ,3 

MV V?;L 

«/? ^/r 

L 
3 

-      n r / 
(II.2c) 

U2J 

2T"" f/f, 

- r/£ 2+J 
MY9/IT

+
~ ^;L>=f(t> ?eJK•,V&>*>*>>*) 

H 

(n,2d) 

62 



-6 
where %       is the same as ^K  defined in Section ha  "with <6=L   $    and 

1 = ^, A 
r »fir (Mr) J 

The forms of Eqs. (II.2a) - (II.2d) given above have the property that, for cases 

involving very strong shock waves, f^f* or IT will drop out from the right of 

Eqs» (II.2a) - (II,2d), and the total number of the similarity parameters can 

therefore be reduced by one. The forms (II.2b) - (II.2d) have the additional ad- 

vantage that, for strong shocks, small € , unit Prandtl number, linear repre- 

sentation of the viscosity-temperature relation, and uniform Tw/T     s    n°t only 

the constants Pr  and ä) drop out from the similitude but also the parameters 

6 and Tw/l~0  are not required to remain fixed in the simulation. The last 

three forms correspond to the forms of particular solutions presented in Figs. 3- 

6. 
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TABLE I 

COMPARISON OF SKIN FRICTIONS AND SURFACE HEAT-TRANSFER 
RATES OF A FLAT PLATE AT HIGH MACH NUMBER PREDICTED 
BY SOLUTIONS ASSUMING LINEAR VISCOSITY-TEMPERATURE 

RELATIONS AND THOSE BASED ON YOUNG'S FORMULA 
FOR /* *c Tö 

Table 1(a)  Asymptotic Formulas for high M 

Reference Temperature 

<of-fik/oMk^rK 

»/= 
2   /&., /o 

Chapman & 

Rubesxn 

r w 

©' 

Present 

'o 

6 1 + 3 

ö-; 

1   L 1   TW 
5* 2   TT 

Young 
1& 

(R-; 
4 

0,18 +^J 
<a-i 
~5~ 

W % 

I- ^r0 
W To. 

TO-KI     TfW\      Comparison of the skin friction predictions for labie ±{ü)      and    ^     s Oo76g at Mgh M 
Pr      -   0o71 

Tw 

7"o 
Chapman &      %                                          i 
Rube sin                              Pre se nt Young 

0 ®o                    s                  1.03               ° 1 

1/10 lallt                                       t                                   1.06                               S 1 

1/6 loio               s.             io05            t 1 

1 0„99                 s               l.o5             s 1 
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TABLE II 

COMPARISON OF THE ZERO-ORDER SOLUTIONS WITH THE SELF-SIMILAR 
SOLUTIONS TO THE PROBLEM OF STRONG SHOCK-BOUNDART LAYER 
INTERACTION OVER A FLAT PLATE FOR / - l.ltO AT DIFFERENT 

WALE-TO-STAGNATION TEMPERATURE RATIOS 

r0 

MYS ** 

•r-% 

A 3 
<~f 

Sources From 
Which Data 
are Given 
or Deduced 

to) 
'S 

- to) 

?* 

0 0.62 0.158 

(0.183) 

0.0965 

(0.10) 

0.216 

(0.20) 

Whalen 

15 Lees 

0.82 0.85 0.89 0.80 

O020 „ - 0.232 0.118 0.283 Whalen _ «, 0.88 0.90 0.75 

O.ljO _ _ 0.312 - - - - _ _ Whalen = „ 0.88 „ _ „ _ 

1,00 - - 0.^1*6 _ « _ 0.855 
18 

Stewartson - « 0.89 - - 0.38 

NOTEs 1.    Lees'  theory based on tangent-wedge formula for pressure. 

fr)             (o) 2.     -f      ,     /Ow     $ etc. represent z ero-order solutions given in text.   » 

3«    Zero-order theory diff 3PS from ot hers only in assumpt ion    ^    close 

to one  (all theories a ssume    Pr =   1,     yU CC   T   ) « 
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TABLE III 

COMPARISON OF THE ZERO-ORDER SOLUTIONS WITH THE SELF-SIMILAR 
SOLUTIONS TO THE FLAT-PLATE AFTERBODY PROBLEM FOR   /    -1.1*0 

To 

Ys 1% Sources From 
Which Data are 
Given or Deduced 

y;> 
IVI 

1»« 

Co) 

£3m,3t 7   K'/3 

I 

0 0,73 0.112 »0671 2.39 Cheng & Pall one3 1.05 l.llu _L o-oL^p 0,97 

(0.775) (0.121) (0.0697) (2.39) (Sakurai1*6) (Oo99) (1.33) (1.10) (0.93) 

oa5 0„73 0„112 .0682 2 „56 Cheng & Pallone^ 1.05 1.10* 1.1U 0.89 

O.lj.0 n 1! ,0701; 2„87 n       n         it « n 1.10 0.77 

1.0 I! tt .07U8 3 060 I!            11               II 11 11 loOU 0.58 

NOTE? 1.     K,H    and    /Cf     are obtained from the self-similar solutions to the 
boundary-layer problem under the pressure given» 

2»   <sMljh 4"= Ke/e        (for    y    =o). 
3.    The numerical coefficient in the shock-shape result for    Y    » 1.U0 

given by Cheng & Pallone is in errorj the corrected formula is 

Ys      - 0,73Jk'/3(y/t)'3t  • 

k«    -^°   j   /O^(0     , etc. represent zero-order solutions given in Eq.  (h«$)<> 

5«    If data deduced from Sakurai's blast-wave solution are used as a 
basis for comparison^, the zero-order approximation will generally 
appear better* 

6.    For the case of cylindrical afterbodies, the blast-wave solution of 
Sakurai gives 

Ys   - 0.795 >'Afo£/*£     j»w       - 0.0689 ^Mli^-f-    , and 

Ysyrs    -0.958,     Av°/^w        s1^6* 
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(a) 

U >> a.. 

ENTROPY LAYER: V%   < y   <   Ye 

SHOCK LAYER:       Ye   <  y   <   Ys 

» 

Figure  I  (a)  ILLUSTRATIONS OF THE STREAM-LINE PATTERN OF THE FLOW Fl 
AROUND A SLENDER BODY WITH SMALL BLUNT NOSE 

(b)  DIVISION OF THE INVISCID-FLOW REGION ABOUT A SLENDER 
AFTERBODY INTO A SHOCK LAYER AND AN ENTROPY LAYER 
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6? 



10.00 

1.00 

m 
'map 

o.io 

.01 

1         1 

!        < !    i    i 

i 

t '-]     ^~"                    1 
(a «UJs>//; ; y / ; ;*y K,            ; 

t   o 

CO 

St. M%2/3(%f3 

'         1        < 

1                1 

t 

*        •       I j 
—-f—M- 

t 

!   ! 1 I 
I 
i 

|TP    <-* -4M t 

j 
2T = /.?0 1 i     i 1 1               ] 

1               j 

^^^^ ̂_ i ' 

4*£-,., 1  **• 
1 

L-.J L. 

t 4. 
#- / 

 i  
i 

.....  ill                  ~ /*.  <)2       4,    1 

1 i 
 j.  | 

 i 

Y,. 
0  f 1 

I    i 
I  ! III 

i J 
i 

10 
v-/-k,t 

100 1000 

FIGURE 2   DETERMINATION OF THE MAXIMUM PERTURBATION VELOCITY 
\All\= t^-tc OVER A FLAT-PLATE AFTERBODY IN AN INV ISC ID 

HYPERSONIC FLOW 

68 



WHALEN 

(zr= i.w,7^/r0= o) 

2/3 

(a)    SHOCK SHAPE 

10-        Xe/Ke 
(b)    SURFACE PRESSURE (c)    SURFACE HEAT-TRANSFER  RATE 
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